
Research in supramolecular chemistry also has application in green chemistry where reactions have been developed which proceed in the solid state directed by non-covalent bonding. Such procedures are highly desirable since they reduce the need for solvents during the production of chemicals.
Green chemistry also called sustainable chemistry, is a chemical philosophy encouraging the design of products and processes that reduce or eliminate the use and generation of hazardous substances. Whereas environmental chemistry is the chemistry of the natural environment, and of pollutant chemicals in nature, green chemistry seeks to reduce and prevent pollution at its source. In 1990 the Pollution Prevention Act was passed in the United States. This act helped create a modus operandi for dealing with pollution in an original and innovative way.
As a chemical philosophy, green chemistry derives from organic chemistry, inorganic chemistry, biochemistry, analytical chemistry, and even physical chemistry. However, the philosophy of green chemistry tends to focus on industrial applications. Contrast this with click chemistry which tends to favor academic applications, although industrial applications are possible. The focus is on minimizing the hazard and maximizing the efficiency of any chemical choice. It is distinct from environmental chemistry which focuses on chemical phenomena in the environment.
In 2005 Ryoji Noyori identified three key developments in green chemistry: use of supercritical carbon dioxide as green solvent, aqueous hydrogen peroxide for clean oxidations and the use of hydrogen in asymmetric synthesis.
As a chemical philosophy, green chemistry derives from organic chemistry, inorganic chemistry, biochemistry, analytical chemistry, and even physical chemistry. However, the philosophy of green chemistry tends to focus on industrial applications. Contrast this with click chemistry which tends to favor academic applications, although industrial applications are possible. The focus is on minimizing the hazard and maximizing the efficiency of any chemical choice. It is distinct from environmental chemistry which focuses on chemical phenomena in the environment.
In 2005 Ryoji Noyori identified three key developments in green chemistry: use of supercritical carbon dioxide as green solvent, aqueous hydrogen peroxide for clean oxidations and the use of hydrogen in asymmetric synthesis.
Examples of applied green chemistry are supercritical water oxidation, on water reactions and dry media reactions.
Bioengineering is also seen as a promising technique for achieving green chemistry goals. A number of important process chemicals can be synthesized in engineered organisms, such as shikimate, a Tamiflu precursor which is fermented by Roche in bacteria.
Bioengineering is also seen as a promising technique for achieving green chemistry goals. A number of important process chemicals can be synthesized in engineered organisms, such as shikimate, a Tamiflu precursor which is fermented by Roche in bacteria.