You Are Visitors Nos.

Supramolecular Chemistry

Supramolecular chemistry refers to the area of chemistry that focuses on the noncovalent bonding interactions of molecules. While traditional chemistry focuses on the covalent bond, supramolecular chemistry examines the weaker and reversible noncovalent interactions between molecules. These forces include hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-pi interactions and electrostatic effects. Important concepts that have been demonstrated by supramolecular chemistry include molecular self-assembly, folding, molecular recognition, host-guest chemistry, mechanically-interlocked molecular architectures, and dynamic covalent chemistry. The study of non-covalent interactions is crucial to understanding many biological processes from cell structure to vision that rely on these forces for structure and function. Biological systems are often the inspiration for supramolecular research.

Electrostatics

Electrostatics is the branch of science that deals with the phenomena arising from what seems to be stationary electric charges. Since ancient history it is known that some materials attract light particles after rubbing. The greek word for amber, (electron), gave name for many areas of natural science. Electrostatic phenomena arise from the forces that electric charges carry out on each other. Such forces are described by Coulomb's law. Electrostatic phenomena include such as simple as the attraction of plastic wrap to your hand after you remove it from a package to apparently spontaneous explosion of grain silos, to damage of electronic components during manufacturing, to the operation of photocopiers. Electrostatics involves the buildup of charge on the surface of objects due to contact with other surfaces. Although charge exchange happens whenever any two surfaces contact and separate, the effects of charge exchange are usually only noticed when at least one of the surfaces has a high resistance to electrical flow. This is because the charges that transfer to or from the highly resistive surface are more or less trapped there for a long enough time for their effects to be observed. These charges then remain on the object until they either bleed off to ground or are quickly neutralized by a discharge: e.g., the familiar phenomenon of a static 'shock' is caused by the neutralization of charge built up in the body from contact with nonconductive surface

Host-guest chemistry

In supramolecular chemistry, host-guest chemistry describes complexes that are composed of two or more molecules or ions held together in unique structural relationships by hydrogen bonding or by ion pairing or by Van der Waals force other than those of full covalent bonds.

The host component is defined as an organic molecule or ion whose binding sites converge in the complex and the guest component is defined as any molecule or ion whose binding sites diverge in the complex.